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Forecasting basics
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Time series data

« Time series are measurements made at regular intervals f A“ “
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ML tasks for time series data
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Time series forecasting

« What will happen in the future given the past?
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Probabilistic forecasting

« Probabilistic forecast captures uncertainty in predictions
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Local models

 Fit a separate model for each :
individual time series f ( AN

« Examples: ARIMA, ETS, Theta
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Global models

« Fit a single model for each task
« Examples: DeepAR, TFT, PatchTST

High flexibility
Fast inference
Slow training
Data hungry
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Pretrained models

« Can we develop a single model that both
= requires no dataset-specific training and

= performs well on new time series tasks?

High Quality Forecast

Unseen Time Series é
Pretrained
WN’\I > time series
forecaster
e
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LLM-based forecasting models

Text-based prompting
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Context: From August 16, 2019, Friday to August 30, 2019, [" » Output Projection ]
Friday, the average temperature of region 110 was 78, 81, 83, T
84, 84, 82, 83, 78, 77, 77, 74, 77, 78, 73, 76 degree on each HEN T|l [ [ []
day.
Question: What is the temperature going to be on August 31, % Pre-trained LLM
2019, Saturday? (E2)
Answer: The temperature will be 78 degree. RS S ——— .
q J EEEEEEEEEEEEE)
PromptCast f f
3"%Pre-i‘mined LLM [/‘ Patch Reprogram ]

(Embedder) 4
Patching @

[0.123,1.23,12.3,123.0—'"1 2,123,1230,12300" ]

LLMTime
TimelLLM

Extremely slow & expensive inference
X Require task-specific prompt engineering & fine-tuning
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Chronos
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Introducing Chronos

« Main idea: Adapt LLM architectures for time series forecasting

Scaled Historical Time Series
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Language modeling and forecasting

“Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,

One for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.”

|

Language
Model

l

“One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.”

Predict the next sequence of words (tokens)

adWs
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14



Time series tokenization

“Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.”
Text .
Tokenizer ]
a“ Threell " Ringll IISII a“ forll a“ thell a“ Elll Ilvenll II-II Ilkingll llsll .. ?

Text language models have a discrete vocabulary Time series are real-valued signals

adWs
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Time series tokenization
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scale each time series
by its absolute mean
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Regression via classification

A
any language model architecture ]
may be used here —
(e.g., T5, GPT, LLaMA) ]
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— Next Token ID
Train language model architectures on tokens from —
the time series vocabulary using the cross-entropy loss =
Y
Predicted
Probabilities

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9



Sampling

Probabilistic Forecast
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The complete Chronos framework

« Requires no changes to the language model architecture & training procedure

« Probabilistic by design

Scaled Historical Time Series Probabilistic Forecast
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Training datasets

« 28 datasets from various domains and frequencies

« 890K time series with 84B observations
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TSMixup: Data augmentation for time series

Improve pattern diversity by miXing tlme Original Time Series TSMix Augmentations
series from different datasets

« Sample K ~ {1, 2,3} time series

V1, > Yk ~ Dtrain
« Sample weights

A1, ., Ag ~ Dirichlet(a)

« Combine time series
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KernelSynth: Synthetic data generation

« Supplement real data with synthetic time series from Gaussian processes
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Chronos variants

Based on the T5 encoder-decoder architecture

&

Chronos-T5 (Tiny) Chronos-T5 (Mini) Chronos-T5 (Small)
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Chronos-T5 (Large)
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Other pretrained

Train Dataset

New Data
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Baseline models

Pretrained models

Single pretrained model used
across all tasks
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LLMTime
ForecastPFN
LaglLlama
Moirai
TimesFM
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Task-specific models

Separate model trained / fine-
tuned for each task

PatchTST
DeepAR
WaveNet
TFT
DLinear
NBEATS
NHITS
GPTA4TS

Local models

Separate model trained for
each time series

Naive
SeasonalNaive
AUtoETS
AutoARIMA
AutoTheta
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Benchmarking Chronos

« Zero-shot probabilistic & point forecasting performance on 29 datasets

I Local Models [ Task Specific Models

TFT

I Pretrained Models (Zero Shot)

0.639
0.649
0.661

Chronos-T5 (Large)
Chronos-T5 (Base)

N-HiTS 0.672
Chronos-T5 (Small) 0.672
N-BEATS 0.681

PatchTST

0.684

Moirai-1.0-R (Large) 0.685

Chronos-T5 (Mini)

I Pretrained Models (Other)

PatchTST 0.810
N-HiTS 0.830
Chronos-T5 (Large) 0.831

N-BEATS
DeepAR
Chronos-T5 (Base)

TFT
Chronos-T5 (Small)

0.835
0.843
0.844
0.847
0.856

Chronos-T5 (Mini) 0.866
0.690 Chronos-GPT2 0.866
"0 Moirai-1.0-R (Base) 0.699 S Moirai-1.0-R (Large) 0.874
3 Chronos-GPT2 0.700 3 AutoTheta 0.875
= DeepAR 0.733 S DLinear 0.894
DLinear 0.757 GPTATS 0.895
AutoARIMA 0.761 AutoARIMA 0.908
AutoTheta 0.793 Moirai-1 -O-VI\?I (Ba;ei 0693:1
. aveNe .
LLMTime 0.804 AUtoETS 0.953
AutoETS 0.838 LLMTime 0.962
WaveNet 0.842 Seasonal Naive 1.000
Seasonal Naive Naive 1.188
LagLLaMA 1.097 LagLLaMA 1.291
Naive 1.152 ForecastPFN 2.450
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.5 1.0 1.5 2.0 2.5
Agg. Relative WQL
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Try out Chronos

[ XN ) (5] | & Chronos Models - aamazon Co X ) amazon-science/chronos- forec X 4 v
° ° ° ° <« C @ O B https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d 1 L ) @ 2 & &8 55 =
« Training, inference & evaluation code .
! ¥ Hugging Face Models Datasets Spaces Posts Docs Pricing = .

available on GitHubO

== amazon's Collections  + New

Chronos Models Chronos Models 4 Upvoted 16

€aGa »

Chronos: Pretrained (language) models for time series

forecasting based on the T5 architecture.

« Model weights & training data available

s amazon/chronos-t5-tiny
Theme

on Hugging Face &

s amazon/chronos-t5-mini View history

Collection guide
s amazon/chronos-t5-small Browse collections

Public

Delete collection

« Run Chronos with 1 line of code using
AutoGluon @ g

Downloaded 60M+ times on Hugging Face &

adWs
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The way ahead
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Is forecasting now “solved”?

« A powerful recipe

Lots of data I:::::I Large transformer —1 Accurate zero-
model E— shot forecaster

J

« Can we now just follow the NLP playbook to “solve” forecasting?
= More data
= Bigger models

= = One model to rule them all?
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Why AutoML is the future of forecasting

« Pretrained forecasting models are fast & cheap (by LLM standards)

« Many ways to improve a single model!

= Preprocessing, fine-tuning, calibration, conformal prediction, ...

« Many ways to combine models!

= Ensembling, stacking, boosting, ...
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Pretrained models in the AutoML toolbox

Preprocessing Model portfolio Adaptation Ensembling

Preprocessing can Collection of (small) pre- Adapt pretrained models Combine several models

improve accuracy trained models to the task at hand into an ensemble

« Scaling « Chronos « Fine-tuning - Boosting

- Box-Cox transform - TimesFM - Calibration - Stacking

« Outlier removal - MOIRAI - Conformal prediction - Linear ensembles
aws
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Beyond univariate forecasting

« Covariates may provide important exogenous information

Historical Context Forecast
II'\NI'\NI’\NI’\I Pretrained )Vl’\N
Model

Exogenous Features
holidays, promotions,
weather, public events, ...

« Challenge: Number and type of covariates are not known a priori
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Multimodal forecasting

« Other modalities (e.g., text and images) can be relevant for the forecast

Historical Context Forecast

WW Pretrained )VI'\N
Model
Multimodal
Exogenous Features
time series, text, images

« Challenge: Public multimodal time series datasets are extremely scarce
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Multivariate forecasting

« Joint modeling of multi-dimensional time series
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2 70
60 i
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2014-06-04  2014-06-05 2014-06-06  2014-06-07  2014-06-08  2014-06-09 2014-06-06  2014-06-07  2014-06-08  2014-06-09  2014-06-10

« Challenge: Number of dimensions and their interactions not known a priori

adWs
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Data & benchmarks

« High-quality datasets are essential for continued progress

« Many important questions on the data side
= How to quantify the quality and diversity of time series data?
= |s synthetic data all you need?

= How to correctly benchmark time series models?
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Chronos team

Abdul Fatir Lorenzo Caner Xiyuan Pedro Mercado Huibin Syama Sebastian
Ansair Stella Turkmen Zhang Lopez Shen Rangapuram Arango
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Shubham Jasper Danielle Andrew Kari Michael Michael Bernie
Kapoor Zschienger Robinson Wilson Torkkola Mahoney Bohlke-Schneider Wang
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Summary

« Pretrained models can make accurate zero-shot forecasts
« Chronos turns forecasting into next-token prediction via scaling & quantization

« Lots of exciting open research questions in this space

... and AutoML is likely the answer to some of them!
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